Long-Term Behavior of Solutions of the Difference Equation xn+1=xn-1xn-2-1

نویسندگان

  • Candace M. Kent
  • Witold Kosmala
  • Stevo Stević
چکیده

and Applied Analysis 3 Proof. Assume that xN xN 2k and xN 1 xN 2k 1, for every k ∈ N0, and some N ≥ −2, with xN / xN 1. Then, we have xN 4 xN 2xN 1 − 1 xNxN 1 − 1 xN 3 xN 1. 2.4 From this and since xN 4 xN , we obtain a contradiction, finishing the proof of the result. Theorem 2.3. There are no periodic or eventually periodic solutions of 1.1 with prime period three. Proof. If xN xN 3k, xN 1 xN 3k 1, xN 2 xN 3k 2, k ≥ 0, 2.5 for some N ≥ −2, we have xN 3 xN 1xN − 1 xN, xN 4 xN 2xN 1 − 1 xN 1, xN 5 xN 3xN 2 − 1 xNxN 2 − 1 xN 2. 2.6 If xN 0, xN 1 0, or xN 2 0, then from 2.6 we easily obtain contradictions in all these cases. Hence, wemay assume that xN / 0, xN 1 / 0, and xN 2 / 0. Equalities in 2.6 also imply that xN 1 xN 1 xN , xN 2 xN 1 1 xN 1 , xN xN 2 1 xN 2 . 2.7

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New exact solutions of the discrete fourth Painlevé equation

In this paper we derive a number of exact solutions of the discrete equation xn+1xn−1 + xn(xn+1 + xn−1) = −2znxn + (η − 3δ − z n)xn + μ (xn + zn + γ)(xn + zn − γ) , (1) where zn = nδ and η, δ, μ and γ are constants. In an appropriate limit (1) reduces to the fourth Painlevé (PIV) equation dw dz2 = 1 2w ( dw dz )2 + 32w 3 + 4zw + 2(z − α)w + β w , (2) where α and β are constants and (1) is commo...

متن کامل

Bäcklund Transformations and Hierarchies of Exact Solutions for the Fourth Painlevé Equation and their Application to Discrete Equations

In this paper we describe Bäcklund transformations and hierarchies of exact solutions for the fourth Painlevé equation (PIV) dw dz = 1 2w ( dw dz )2 + 3 2 w + 4zw + 2(z − α)w + β w , (1) with α, β constants. Specifically, a nonlinear superposition principle for PIV, hierarchies of solutions expressible in terms of complementary error or parabolic cylinder functions as well as rational solutions...

متن کامل

Computing Lyapunov constants for random recurrences with smooth coe$cients

In recent years, there has been much interest in the growth and decay rates (Lyapunov constants) of solutions to random recurrences such as the random Fibonacci sequence xn+1=±xn±xn−1. Many of these problems involve nonsmooth dynamics (nondi1erentiable invariant measures), making computations hard. Here, however, we consider recurrences with smooth random coe$cients and smooth invariant measure...

متن کامل

A Note on the Nonlinear Recurrence xn + 1 xn − 1 − x 2 n = A Michele Elia

The existence and uniqueness of the integral solutions of xn+1xn−1− xn = A are examined and some open questions settled. Mathematics Subject Classification: 39A99, 12F05, 11B39

متن کامل

Global asymptotic stability in a class of generalized Putnam equations

It was conjectured that for every integer m 3 the unique equilibrium c = 1 of the generalized Putnam equation xn+1 = ∑m−2 i=0 xn−i + xn−m+1xn−m xnxn−1 + ∑m i=2 xn−i , n= 0,1,2, . . . , with positive initial conditions is globally asymptotically stable. In this paper, we prove this conjecture. © 2005 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010